Assessing the performance of implicit solvation models at a nucleic acid surface.

نویسندگان

  • Feng Dong
  • Jason A Wagoner
  • Nathan A Baker
چکیده

Implicit solvation models are popular alternatives to explicit solvent methods due to their ability to "pre-average" solvent behavior and thus reduce the need for computationally-expensive sampling. Previously, we have demonstrated that Poisson-Boltzmann models for polar solvation and integral-based models for nonpolar solvation can reproduce explicit solvation forces in a low-charge density protein system. In the present work, we examine the ability of these continuum models to describe solvation forces at the surface of a RNA hairpin. While these models do not completely describe all of the details of solvent behavior at this highly-charged biomolecular interface, they do provide a reasonable description of average solvation forces and therefore show significant promise for developing more robust implicit descriptions of solvent around nucleic acid systems for use in biomolecular simulation and modeling. Additionally, we observe fairly good transferability in the nonpolar model parameters optimized for protein systems, suggesting its robustness for modeling general nonpolar solvation phenomena in biomolecular systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of solvation-effect methods for the simulation of peptide interactions with a hydrophobic surface

In this study we investigated the interaction behavior between thirteen different small peptides and a hydrophobic surface using three progressively more complex methods of representing solvation effects: a united-atom implicit solvation method [CHARMM 19 force field (C19) with Analytical Continuum Electrostatics (ACE)], an all-atom implicit solvation method (C22 with GBMV), and an all-atom exp...

متن کامل

Comparison of implicit solvent models for the simulation of protein-surface interactions

Empirical force field-based molecular simulations can provide valuable atomistic-level insights into protein-surface interactions in aqueous solution. While the implicit treatment of solvation effects is desired as a means of improving simulation efficiency, existing implicit solvent models were primarily developed for the simulation of peptide or protein behavior in solution alone, and thus ma...

متن کامل

Solvation forces on biomolecular structures: A comparison of explicit solvent and Poisson-Boltzmann models

Continuum electrostatics methods have become increasingly popular due to their ability to provide approximate descriptions of solvation energies and forces without expensive sampling required by explicit solvent models. In particular, the Poisson-Boltzmann equation (PBE) provides electrostatic potentials, solvation energies, and forces by modeling the solvent as a featureless, dielectric materi...

متن کامل

Computational protein design is a challenge for implicit solvation models.

Increasingly complex schemes for representing solvent effects in an implicit fashion are being used in computational analyses of biological macromolecules. These schemes speed up the calculations by orders of magnitude and are assumed to compromise little on essential features of the solvation phenomenon. In this work we examine this assumption. Five implicit solvation models, a surface area-ba...

متن کامل

Influence of Solvent Representation on Nuclear Shielding Calculations of Protonation States of Small Biological Molecules.

In this study, we assess the influence of solvation on the accuracy and reliability of isotropic nuclear magnetic shielding calculations for amino acids in comparison to experimental data. We focus particularly on the performance of solvation methods for different protonation states, as biological molecules occur almost exclusively in aqueous solution and are subject to protonation with pH. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 10 32  شماره 

صفحات  -

تاریخ انتشار 2008